Effects of surface charge density and distribution on the nanochannel electro-osmotic flow
نویسندگان
چکیده
Surface charge density and distribution dependence of a nanochannel electro-osmotic flow was examined using a molecular dynamics (MD) model. Systems consisting of Na and Cl− ions in water confined between crystalline walls with varying negative charge on inner surfaces in an external electric field were investigated. At low surface charge densities, water flows as expected by common interpretations of electro-osmosis. At intermediate surface charge density, the flow exhibits a maximum. Strongly charged surfaces cause adsorption of counterions, immobilization of the near-wall fluid layers, and subsequent flow reversal. An effect of increase in the viscosity of water near the strongly charged surface was demonstrated. When the discrete −1e charge was distributed on a subgrid of surface atoms, the flow deteriorated and reversed at much lower surface charge densities than when all the surface atoms carried equal partial charge.
منابع مشابه
Charge inversion and flow reversal in a nanochannel electro-osmotic flow.
Ion distribution and velocity profiles for electro-osmotic flow in a 3.49 nm wide slit channel with a surface charge density of -0.285 C/m(2) are studied using molecular dynamics simulations. Simulation results indicate that the concentration of the co-ion exceeds that of the counterion in the region 0.53 nm away from the channel wall, and the electro-osmotic flow is in the opposite direction t...
متن کاملNumerical Study of Pure Electroconvection and Combined Electro-thermo-convection in Horizontal Channels
Electrohydrodynamic effect on natural convection in horizontal channels is investigated from a numerical point of view. The EHD effect is induced by narrow strip electrodes placed at the bottom wall of the channel. The channel is subjected in a first stage only to the electric forces, and in a second stage to the simultaneous action of a temperature gradient and an electric field. The interacti...
متن کاملNon-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel
The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...
متن کاملSoft nanofluidic transport in a soap film.
We investigate experimentally the electrokinetic properties of soft nanofluidic channels that consist in soap films with nanometric thickness, covered with charged surfactants. Both the electric and fluidic responses of the system are measured under an applied voltage drop along the film. The electric field is shown to induce an electro-osmotic hydrodynamic flow in the film. However, in contras...
متن کاملStudy Effect of Deformation Nanochannel Wall Roughness on The Water-Copper Nano-Fluids Poiseuille Flow Behavior
In the nanochannel flow behavior with respect to expand their applications in modern systems is of utmost importance. According to the results obtained in this study, the condition of nonslip on the wall of the nanochannel is not acceptable because in the nano dimensions, slip depends on different parameters including surface roughness. In this study, keeping the side area roughness, deformatio...
متن کامل